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Abstract 

If we histogram the normal flow vectors in images of a scene viewed by a moving ob- 
server, we can use the time-varying histogram to derive qualitative information about the 
observer's motion—for example, whether it is (primarily) translational or rotational, and 
whether the direction of translation or axis of rotation is (roughly) parallel or perpendic- 
ular to the camera axis. This is illustrated using flow histograms obtained from a variety 
of real image sequences. If the motion is translational, qualitative information about the 
scene depth can also be obtained from the flow histograms—for example, whether the 
scene depth is unimodal or bimodal. This is illustrated for real scenes containing a layer 
of vegetation seen against a textured background, or two layers of vegetation. 
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1    Introduction 

A moving agent that obtains a sequence of images of a stationary scene can infer both 
its motion and the layout of the scene, up to a range/speed ambiguity, by analyzing 
the images. The classical "structure from motion" problem (Ullman, 1979) attempts to 
determine the motion and layout completely (except for the ambiguity). However, as is 
well known, it is quite difficult to obtain this complete information accurately. (Thomas 
et al., 1993; Daniilidis and Spetsakis, 1997). It may therefore be useful to attempt to 
derive only partial information. 

A number of researchers have shown how to derive partial information about the 
agent's motion or the scene structure from images. Examples include relative distances of 
objects (Nitzberg and Mumford, 1990); time to collision with (or rate of approach toward) 
an object (Lee, 1976; Nelson and Aloimonos, 1989; Subbarao, 1990; Cipolla and Blake, 
1992; Meyer and Bouthemy, 1992; Ancona and Poggio, 1993; Tistarelli and Sandini, 
1993; Duric et al., 1994; Burlina and Chellappa, 1994); and qualitative information 
about an object's shape (Koenderink and Van Doom, 1975; Cipolla and Zisserman, 
1992). Other relevant references include (Jain, 1983; Thompson and Kearney, 1986; 
Nelson and Aloimonos, 1988; Francois and Bouthemy, 1990; Weinshall, 1991; Thompson 
and Painter, 1992; Aloimonos and Duric, 1994; Fermuller and Aloimonos, 1995). 

We show in this paper that a moving agent can obtain basic information about its 
motion by examining the sequence of two-dimensional histograms of normal flow vectors 
computed from successive pairs of images. (A related idea is the use of Hough transform 
methods in flow analysis (Kalvainen, et al. 1992; Bober and Kittler, 1994; Heikkonen, 
1995).) Specifically, we show, using a variety of real image sequences, that these his- 
togram sequences are quite different for different types of simple motions: translation 
along the camera axis, translation in a plane perpendicular to the camera axis, rota- 
tion around the camera axis, and rotation around an axis perpendicular to the camera 
axis. Obviously, combinations of these motions give rise to more complicated histograms; 
but it is well known that humans find such combined motions difficult to interpret. In 
any case, methods of selective stabilization (Duric and Rosenfeld, 1996; Yao and Chel- 
lappa, 1997) can be used to eliminate "unwanted" components—in particular, rotational 
components—from an image sequence. 

If the motion is a translation, it is also possible to derive partial information about the 
layout of the scene by examining the normal flow histogram. In particular, if the motion 
is translation in a direction perpendicular to the camera axis (e.g., a moving vehicle 
carrying a sideways-pointing camera), parts of the scene at different distances from the 
camera give rise to different peaks in the normal flow histogram (so that if the distances 
are bimodal, the histogram is bimodal). On the other hand, if the motion is translation 
along the camera axis (a moving vehicle carrying a forward-pointing camera), the normal 
flow vectors all point away from the focus of expansion (FOE), which is located at the 
center of the image. In this situation, if we compute the magnitudes of the normal flow 
vectors, and scale them by their distances from the FOE, then parts of the scene at 
different distances from the camera give rise to different peaks in the one-dimensional 
histogram of the scaled values. We demonstrate these effects using images of real scenes 
containing a layer of vegetation seen against a textured background, or two layers of 
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Vegetation. It should be pointed out that such scenes present a severe challenge to 
traditional structure-from-motion methods, which typically impose constraints on the 
(piecewise) smoothness of the surfaces in the scene and the optical flow fields to which 
they give rise. 

The detection of peaks in velocity histograms was used by Jasinschi et al. (1992) 
in studies of "motion transparency" in synthetic patterns; an earlier technical report 
(Jasinschi et al., 1991) also contained the vegetation results presented here, but these 
results were omitted from (Jasinschi et al, 1992). 

In Section 2 we give equations for the normal flow resulting from a given camera 
motion, and describe our method of computing normal flow histograms. In Section 3 
we illustrate the appearance of normal flow histogram sequences obtained from different 
types of camera motions, and show how selective stabilization methods can be used to 
eliminate the effects of complex motions. In Section 4 we give examples of bimodal flow 
histograms obtained from translatory motions relative to scenes that have bimodal depth 
distributions. 

2    Flow computation and histogramming 

The instantaneous velocity of the image point (x,y), the image of the scene point 
(X, Y, Z) under perspective projection, is given by 

.       -Uf + xW xy fx2       \ 
x =  _ + uxj-u;ylj + f\+uzy (1) 

-Vf + yW 
(2) 

where T = (U V W)T is the translational velocity and u = (ux uy uz)
T is the rotational 

velocity of the camera. 
Let Tand /be the unit vectors in the x and y directions, respectively; r = xt + yf 

is the image motion field at the point f=xt + yj. If we choose a unit direction vector 
nr = nxi + riyfai the image point f and call it the normal direction, then the normal 
motion field at f is rn = (f-nr)nr = (nxx + nyy)nr. nr can be chosen in various ways; the 
usual choice (and the one that we use) is the direction of the image intensity gradient 
nr = V//||V/||. 

Note that the normal motion field along an edge is orthogonal to the edge direction. 
Thus, if at time t we observe an edge element at position f, the apparent position of that 
edge element at time * + At will be f + At'rn. This is a consequence of the well-known 
aperture problem. We base our method of estimating the normal motion field on this 
observation. 

For each image frame (say collected at time t) we find edges using an implementation 
of the Canny edge detector. For each edge element, say at r, we resample the image 
locally to obtain a small window with its rows parallel to the image gradient direction 
rtr = V7/||V/||. For the next image frame (collected at time t + At) we create a larger 
window, typically twice as large as the maximum expected value of the magnitude of 
the normal motion field.   We then slide the first (smaller) window along the second 



(larger) window and compute the difference between the image intensities. The zero of 
the resulting function is at distance un from the origin of the second window; note that 
the image gradient in the second window at the positions close to u„ must be positive. 
Our estimate of the normal motion field is then —ttn, and we call it the normal flow. 

We construct a normal flow histogram by quantizing the x and y components of each 
un. The histogram shows the number of occurrences of each pair of quantized values. 

3    Flow histograms for simple motions 

In this section we show examples of flow histogram sequences that result from four simple 
types of camera motion: z-axis rotation, z-axis translation, lateral translation, and pan. 
(We follow the usual convention that the z-axis is the optical axis of the camera; lateral 
translation is translation along an axis in the rcj/-plane, and pan is rotation around such an 
axis.) We also show flow histograms obtained from a forward-pointing camera carried by 
a ground vehicle moving on unpaved terrain; when the image sequence is not stabilized, 
the flow shows a mixture of effects due to translation, roll, and pitch, but stabilization 
can be used to remove the rotation effects. 

Figures la-b show two frames from the "Robot" sequence, taken at the University 
of Massachusets; here the motion is essentially clockwise z-axis rotation. This motion 
results in counterclockwise image rotation around the center of the image plane; at each 
point of the image, the direction of motion is tangential, and its magnitude increases 
with distance from the center. If the scene contained edges oriented in all directions, the 
resulting normal flow would contain vectors of all magnitudes in all directions; but since 
most of the edges in the scene in Figure 1 are oriented in two perpendicular directions, 
most of the normal flow vectors are perpendicular to those directions (Figures lc-d). This 
results in a +-shaped flow histogram (Figures le-f); as the camera rotates, this histogram 
rotates (since the edges are revolving around the image center). 

Figures 2a-c show three frames of the "Coke can" sequence, taken at NASA Ames 
Research Center; here the motion is essentially z-axis translation toward the scene. This 
results in an expansion of the image; at each point of the image, the direction of motion 
is radial, and its magnitude increases with distance from the center (and with closeness of 
the scene point to the camera). If the scene contained edges oriented in all directions, the 
resulting normal flow would contain vectors of all magnitudes in all directions; but since 
most of the edges in the scene in Figure 2 are oriented horizontally or vertically, most of 
the normal flow vectors are horizontal or vertical (Figures 2d-f), once again resulting in 
a +-shaped flow histogram (Figures 2g-i). As the camera approaches the scene, the flow 
magnitude increases, so that the flow histogram expands. 

Figures 3a-b show two frames from the SRI "Tree" sequence, in which the camera 
is pointing forward and translating to the left. This results in rightward horizontal 
image flow whose magnitude increases with closeness of the scene point to the camera. 
Since the scene contains many near-vertical edges (the tree trunks), the normal flow is 
predominantly rightward (Figures 3c-d and e-f). 

Figures 4a-b show two frames from a panning sequence taken in our laboratory. Since 
the camera motion was leftward (counterclockwise around a vertical axis, as seen from 
above), the image flow is predominatly rightward (Figures   4c-d).   The scene contains 



Figure 1: If the motion is z-axis rotatijon, the flow histogram rotates, (a-b) Frames 1 
and 10 of the "Robot" sequence, (c-d) Flow fields for these frames, (e-f) Histograms of 
these flow fields. 



Figure 2: If the motion is z-axis translation, the flow histogram expands, (a-c) Frames 0, 
75, and 150 of the NASA Ames "Coke can" sequence, (d-f) Flow fields for these frames, 
(g-i) Histograms of these flow fields. 



Figure 3: If the motion is lateral translation, the flow histogram is biased in the direction 
of motion, (a-b) Frames 0 and 18 of the SRI "Tree" sequence, (c-d) Flow fields for these 
frames, (e-f) Histograms of these flow fields. 



Figure 4: If the motion is panning, the image flow is approximately constant, so the 
normal flow at an edge of slope 9 has magnitude proportional to cos 9; thus the flow 
histogram has a "crater". (a-b) Frames 8 and 68 of a panning sequence obtained in our 
laboratory, (c-d) Flow fields for these frames, (e-f) Histograms of these flow fields. 



edges in many directions; for an image edge that makes an angle 0 with the vertical, the 
magnitude of the normal flow is proportional to cos 0, and its direction is perpendicular 
to 6, so that the normal flow histogram displays a circular "crater" through the origin 
(Figures 4e-f). 
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Figure 5: Mixed time-varying motions result in more complicated histograms, but sta- 
bilization can simplify them, (a-b) Two frames from an unstabilized image sequence 
obtained by a ground vehicle on rough terrain. (c,e,g,i) Flow fields for four frames in- 
termediate between (a) and (b). The flow due to forward translation appears primarily 
in the lower (nearby) parts; the upper (distant) parts show the effects of (c) downward 
pitch, (e) upward pitch, (g) counterclockwise roll combined with downward pitch, and 
(i) counterclockwise roll only. (d,f,h,j) Histograms of these flow fields. 

Figures 5a-b show two frames from an image sequence taken by a forward-pointing 
camera mounted on a ground vehicle moving across rough terrain. Figures 5c,e,g,i show 
the normal flow at four intermediate frames of this sequence. Here the backward image 
flow due to the forward translation appears primarily in the lower part of the image, 
which shows nearby parts of the terrain. In the upper part of the image, showing terrain 
near the horizon, the translation produces negligible flow, but the rotational effects of 
the bumpy motion are quite apparent. In Figure 5c the vehicle is pitching downward, 
resulting in upward image motion along the horizon. In Figure 5e the pitching is upward' 
resulting in downward image motion of the horizon. In Figure 5g the vehicle is pitching 
downward and rolling counterclockwise; the roll causes the left side of the horizon image 
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Figure 6: (a-j) Corresponding images, flow fields, and histograms after stabilization; the 
pitch and roll effects have been eliminated. 

to move upward and the right side to more downward, while the pitch causes the entire 
horizon image to move upward; at the left of the image these effects add, but at the 
right they cancel. Finally, in Figure 5i the vehicle is rolling counterclockwise, but not 
pitching significantly; this results in upward motion of the horizon image on the left, 
and downward motion on the right. All of these effects are apparent in the normal 
flow and the histograms (Figures 5d,f,h,j). The image sequence can be stabilized to 
eliminate the rotational effects, by detecting the horizon and warping the images so that 
the horizon remains stationary. Figures 6a,b show the same frames as in Figures 5a,b after 
stabilization; note the loss of portions of the image near the edges due to the stabilization. 
Figures 6c-j show the normal flow and the histograms corresponding to Figures 5c-j, but 
for the stabilized image sequence; the rotational flow has been eliminated, leaving only 
the backward image motion due to the forward translation. 

4    Flow histograms for translational motions and bimodal scene depth 

When the camera motion is translational, qualitative information about scene depths can 
sometimes be obtained by examining normal flow histograms. The results in this section 
were obtained seven years ago (Jasinschi et al., 1991), but are reproduced here because 
they have not yet been widely published; they represent an early use of flow histograms 
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Figure 7: Depth map of an artificial scene containing two 3D textures in front of a planar 
backdrop. Darker patches correspond to surfaces that are closer to the observer. 

for qualitative analysis of image sequences. 
We first consider three examples using an artificial scene (Figure 7) containing two 

3D textures at two different distances. In the first example (Figure 8) the camera is 
translating laterally, i.e. parallel to the scene; this yields a parallel flow field composed of 
vectors of three lengths (one representing each of the textures; the third representing the 
background). In the second example, the translation is toward the scene, which yields 
an expansive flow field, with the focus of expansion (FOE) located at the center of the 
image. The flow magnitude is proportional to both the closeness of the scene point to the 
camera and the distance of the image point from the FOE. To eliminate the latter effect, 
we divide the magnitude of each flow vector by the distance from the image point to the 
FOE; the result is shown in Figure 9. In the third example (see Figure 10), the motion 
is diagonal, but here again, dividing by distance to the FOE yields a sharply peaked flow 
magnitude histogram. 

We next consider three real examples in which the translation is lateral. As pointed 
out in Section 3, leftward translation of a forward-pointing camera results in rightward 
image flow; the magnitude of this flow increases with closeness of the scene point to the 
camera. If the scene consists of layers of feature points at different distances from the 
camera, each layer will give rise to flow vectors having a different range of magnitudes; 
thus if there are two layers, the flow histogram will be bimodal. This phenomenon 
is illustrated in Figures 11-13. The scene in Figure 11a contains a plant in front of 
a patterned background, while the scenes in Figure 12a and 13a contain two plants 
in front of one another. In each case, the flow histogram (Figures lib, 12b, 13b) is 
strongly bimodal; the peak closer to the origin arises from the more distant layer. [These 
histograms were constructed by a different method, described in (Jasinschi et al, 1991), 
but we would expect similar results using normal flow histograms.] Figures llc-d, lic- 
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(a) (b) 

Figure 8: (a) The optical flow field generated by an observer translating parallel to the 
scene in Figure 7. (b) The velocity magnitude histogram of the flow field. 

d, llc-d show the image points that contributed flow vectors to the two peaks; they 
evidently correspond to scene points belonging to the two layers. 

Finally, we consider a real example involving z-axis translation toward the scene 
(Figure 14a). The histogram of the scaled flow magnitudes (Figure 14b) is, as expected, 
bimodal; the peaks correspond to the two depth levels, as we see from Figures 14c-d. 

5    Concluding remarks 

Normal flow histograms do not seem to have been used extensively in image sequence 
analysis. We have seen in this paper that they can provide useful qualitative information 
about the camera motion. It was shown in (Jasinschi et al., 1991) that when the motion 
is translational, they can sometimes also provide useful qualitative information about 
the scene depths. Evidently they have many other uses; for example, when a stationary 
camera views a scene containing many moving objects, a normal flow histogram can 
provide useful information about the (apparent) velocities of the objects. The authors 
hope that this paper will serve to call attention to the value of flow histograms, and will 
stimulate further study of their uses. 
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taken by a laterally translating camera, (b) The bimodal flow histogram. The taller peak 
(located near the origin, indicating lower image velocity) corresponds to the depth level 
of the background, and the shorter peak corresponds to the depth level of the plant; its 
position indicates higher image velocity. (c,d) Pixels that contributed to the two peaks. 
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Figure 12: (a) One of a similar pair of images of two house plants, one in front of the 
other, (b) The bimodal flow histogram; the taller peak corresponds to the depth level of 
the rear plant, and the shorter peak to that of the front plant. Note the greater spread 
of the shorter peak due to the greater depth variability, and consequent image velocity 
variability, of the plant which is closer to the camera. (c,d) Pixels that contributed to 
the two peaks. 
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Figure 13: (a) One of a similar pair of images of two bamboo plants, one in front of 
the other, (b) The bimodal flow histogram; the taller peak corresponds to the depth 
level of the rear plant, and the shorter peak to that of the front plant. (c,d) Pixels that 
contributed to the two peaks. 
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Figure 14: (a) One of a pair of images of a plant in front of a fiat, patterned background, 
taken by a camera translating toward the scene, (b) The histogram of the flow magni- 
tudes, scaled by the distances of the image points from the center of the image (where 
the focus of expansion is located). The scaled magnitude should be proportional to the 
closeness of the scene point to the camera. As we see, the histogram is in fact bimodal; 
the taller peak corresponds to the depth level of the backdrop, and the shorter peak to 
that of the plant. (c,d) Pixels that contributed to the two peaks. 
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